Articles
| Open Access |
DOI:
https://doi.org/10.37547/supsci-oje-05-07-27
NEWTON’S METHOD OF FLUXIONS AND ITS ROLE IN THE DEVELOPMENT OF DIFFERENTIAL CALCULUS
Dilmurod Uralovich Bozarov , Shamsiddin Abdijalilovich Khaydarov ,Abstract
This article provides a detailed examination of Isaac Newton’s method of fluxions and its historical and scientific significance in the development of differential and integral calculus. The study analyzes the concepts of fluxion and fluents, the principles of working with infinitesimal quantities, methods for determining the instantaneous rate of change of a function, as well as Newton’s approach to series theory and the geometry of curves. Additionally, several complex problems are solved using Newton’s original method, demonstrating their connection to modern mathematical analysis.
Keywords
fluxion, fluent, differential calculus, infinitesimals, Isaac Newton, series, derivative, history of analysis.
References
Г.Г.Цейтен, История математики в XVI и XVII веках. – М. 1933 Ленинград
Ньютон И. Математические начала натуральной философии. – М.: Наука, 1989.
Ньютон И. О квадратуре кривых. Математические труды. – М.: Гостехиздат, 1957.
Велянд Б. История математики: Развитие анализа. – М.: Мир, 1985.
Клайн М. Математика. Утрата определённости. – М.: Мир, 1984.
Boyer, C. B. The History of the Calculus and Its Conceptual Development. – Dover Publications, 1959.
Whittaker E.T. A History of the Theories of Aether and Electricity. – London: Longman, 1951.
Grabiner J. V. The Origins of Cauchy’s Rigorous Calculus. – MIT Press, 1981.
Степанов В.В. Курс математического анализа. – М.: Физматлит, 2002.
Tursunov S., Qodirov A. Matematik analiz asoslari. – Toshkent: O‘qituvchi, 2015.
Berggren J. L., Borwein J., Borwein P. Pi: A Source Book. – Springer, 2010.